
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326502551

Towards Evolutionary Compression

Conference Paper · July 2018

DOI: 10.1145/3219819.3219970

CITATIONS

0
READS

14

5 authors, including:

Some of the authors of this publication are also working on these related projects:

visual recovery View project

Deep Neural Network Compression View project

Yunhe Wang

Peking University

15 PUBLICATIONS 32 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yunhe Wang on 23 August 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/326502551_Towards_Evolutionary_Compression?enrichId=rgreq-db8a4c5df6f52d6d3688dd4d0e3758a3-XXX&enrichSource=Y292ZXJQYWdlOzMyNjUwMjU1MTtBUzo2NjI3NDM3MzY2NDc2ODNAMTUzNTAyMTgyODU4Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/326502551_Towards_Evolutionary_Compression?enrichId=rgreq-db8a4c5df6f52d6d3688dd4d0e3758a3-XXX&enrichSource=Y292ZXJQYWdlOzMyNjUwMjU1MTtBUzo2NjI3NDM3MzY2NDc2ODNAMTUzNTAyMTgyODU4Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/visual-recovery?enrichId=rgreq-db8a4c5df6f52d6d3688dd4d0e3758a3-XXX&enrichSource=Y292ZXJQYWdlOzMyNjUwMjU1MTtBUzo2NjI3NDM3MzY2NDc2ODNAMTUzNTAyMTgyODU4Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Deep-Neural-Network-Compression?enrichId=rgreq-db8a4c5df6f52d6d3688dd4d0e3758a3-XXX&enrichSource=Y292ZXJQYWdlOzMyNjUwMjU1MTtBUzo2NjI3NDM3MzY2NDc2ODNAMTUzNTAyMTgyODU4Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-db8a4c5df6f52d6d3688dd4d0e3758a3-XXX&enrichSource=Y292ZXJQYWdlOzMyNjUwMjU1MTtBUzo2NjI3NDM3MzY2NDc2ODNAMTUzNTAyMTgyODU4Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yunhe_Wang3?enrichId=rgreq-db8a4c5df6f52d6d3688dd4d0e3758a3-XXX&enrichSource=Y292ZXJQYWdlOzMyNjUwMjU1MTtBUzo2NjI3NDM3MzY2NDc2ODNAMTUzNTAyMTgyODU4Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yunhe_Wang3?enrichId=rgreq-db8a4c5df6f52d6d3688dd4d0e3758a3-XXX&enrichSource=Y292ZXJQYWdlOzMyNjUwMjU1MTtBUzo2NjI3NDM3MzY2NDc2ODNAMTUzNTAyMTgyODU4Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Peking_University?enrichId=rgreq-db8a4c5df6f52d6d3688dd4d0e3758a3-XXX&enrichSource=Y292ZXJQYWdlOzMyNjUwMjU1MTtBUzo2NjI3NDM3MzY2NDc2ODNAMTUzNTAyMTgyODU4Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yunhe_Wang3?enrichId=rgreq-db8a4c5df6f52d6d3688dd4d0e3758a3-XXX&enrichSource=Y292ZXJQYWdlOzMyNjUwMjU1MTtBUzo2NjI3NDM3MzY2NDc2ODNAMTUzNTAyMTgyODU4Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yunhe_Wang3?enrichId=rgreq-db8a4c5df6f52d6d3688dd4d0e3758a3-XXX&enrichSource=Y292ZXJQYWdlOzMyNjUwMjU1MTtBUzo2NjI3NDM3MzY2NDc2ODNAMTUzNTAyMTgyODU4Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Towards Evolutionary Compression
Yunhe Wang

Key Lab. of Machine Perception
(MOE), Cooperative Medianet

Innovation Center, School of EECS,
Peking University
Beijing, China

wangyunhe@pku.edu.cn

Chang Xu
UBTECH Sydney AI Centre, SIT, FEIT,

University of Sydney
Darlington, Sydney, Australia

c.xu@sydney.edu.au

Jiayan Qiu
UBTECH Sydney AI Centre, SIT, FEIT,

University of Sydney
Darlington, Sydney, Australia
jqiu3225@uni.sydney.edu.au

Chao Xu
Key Lab. of Machine Perception
(MOE), Cooperative Medianet

Innovation Center, School of EECS,
Peking University
Beijing, China

xuchao@cis.pku.edu.cn

Dacheng Tao
UBTECH Sydney AI Centre, SIT, FEIT,

University of Sydney
Darlington, Sydney, Australia
dacheng.tao@sydney.edu.au

ABSTRACT
Compressing convolutional neural networks (CNNs) is essential
for transferring the success of CNNs to a wide variety of applica-
tions to mobile devices. In contrast to directly recognizing subtle
weights or filters as redundant in a given CNN, this paper presents
an evolutionary method to automatically eliminate redundant con-
volution filters. We represent each compressed network as a binary
individual of specific fitness. Then, the population is upgraded at
each evolutionary iteration using genetic operations. As a result,
an extremely compact CNN is generated using the fittest individual,
which has the original network structure and can be directly de-
ployed in any off-the-shelf deep learning libraries. In this approach,
either large or small convolution filters can be redundant, and filters
in the compressed network are more distinct. In addition, since the
number of filters in each convolutional layer is reduced, the number
of filter channels and the size of feature maps are also decreased,
naturally improving both the compression and speed-up ratios. Ex-
periments on benchmark deep CNN models suggest the superiority
of the proposed algorithm over the state-of-the-art compression
methods, e.g. combined with the parameter refining approach, we
can reduce the storage requirement and the floating-point multipli-
cations of ResNet-50 by a factor of 14.64× and 5.19×, respectively,
without affecting its accuracy.

CCS CONCEPTS
• Computing methodologies → Neural networks; Supervised
learning by classification; • Mathematics of computing → Net-
work optimization;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD 2018, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3219970

KEYWORDS
deep learning; evolutionary algorithm; network compression; CNN
acceleration
ACM Reference Format:
Yunhe Wang, Chang Xu, Jiayan Qiu, Chao Xu, and Dacheng Tao. 2018.
Towards Evolutionary Compression. In KDD 2018: 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, August 19–
23, 2018, London, United Kingdom. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3219819.3219970

1 INTRODUCTION
Large-scale deep convolutional neural networks (CNNs) have been
successfully applied to a wide variety of applications such as im-
age classification [15, 24, 30, 36–38], object detection [11, 33], and
visual enhancement [9]. To strengthen representation capability
and improve CNN performance, several convolutional layers have
traditionally been used in network construction. Given the complex
network architecture and numerous variables, most CNNs place
excessive demands on storage and computational resources, thus
limiting them to high-performance servers.

We are now in an era of intelligent mobile devices. Deep learn-
ing, one of the most promising artificial intelligence techniques,
is expected to reduce reliance on servers and to apply advanced
algorithms to smartphones, tablets, and wearable computers. Never-
theless, it remains challenging for mobile devices without GPUs and
the necessary memory to carry CNNs usually running on servers.
For instance, more than 232MB of memory and 7.24 × 108 floating
number multiplications would be consumed by AlexNet [24] or VG-
GNet [36] to process a single, normal-sized input image. Hence, spe-
cial developments are required to translate CNNs to smartphones
and other portable devices.

To overcome this conflict between reduced hardware configura-
tions and the higher resource demands of CNNs, several attempts
have beenmade to compress and speed upwell-trained CNNmodels
by refining their parameters including weight pruning [2, 13, 14, 49],
quantization and binarization [1, 5, 6, 20], and matrix decompo-
sition [8]. Wherein, pruning based methods achieved the highest

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2476

https://doi.org/10.1145/3219819.3219970
https://doi.org/10.1145/3219819.3219970

KDD 2018, August 19–23, 2018, London, United Kingdom Yunhe Wang, Chang Xu, Jiayan Qiu, Chao Xu, and Dacheng Tao

10 20 30 40 50 60 70 80 90 100
Iteration

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Fi
tn
es
s

Heavy network (1035 KB)
Accuracy = 92.17%

Fine tuned accuracy = 98.95%

Compact network (103 KB)
Accuracy = 97.43%

Fine tuned accuracy = 99.20%

Medium network (547 KB)
Accuracy = 95.61%

Fine tuned accuracy = 99.12%

Figure 1: An illustration of the evolution of LeNet on the MNIST dataset. Each dot represents an individual in the population,
and the thirty best individuals are shown in each evolutional iteration. The fitness of individuals is gradually improved with
an increasing number of iterations, implying that the network is more compact but remaining the same accuracy. The size of
the original network is about 1.5MB.

compression performance. In specific, Liu et al. [27] developed
to learn CNNs with sparse architectures, thereby reducing model
complexities compared to ordinary CNNs, while Han et al. [14]
directly discarded subtle weights in pre-trained CNNs to obtain
sparse CNNs. In the DCT frequency domain, Wang et al. [44] exca-
vated redundancy on all weights and their underlying connections
to deliver higher compression and speed-up ratios. In addition,
there also some works to refine the architecture of the pre-trained
CNN and construct portable neural networks. For instance, the
teacher-student paradigm [17, 34, 45, 50] learns a deeper student
network supervised by original CNNs with different regularizations.
Wang et al. [42] excavated redundancy in feature maps generated by
considerable convolution filters and then reconstructed a portable
network.

Although the above mentioned methods for eliminating redun-
dancy in convolution filters have reduced the storage and compu-
tational burdens of CNNs to some extend, the research on deep
model compression is still in its infancy. Existing solutions are typi-
cally grounded in different, albeit intuitive, assumptions of network
redundancy, e.g. weight or filter redundancy with small absolute
values, low-rank filter redundancy, and within-weight redundancy.
Although these redundancy assumptions are valid, we hypothe-
size that all possible types of redundancy have yet to be identified
and validated. For example, a large weight may be connected with
extremely small input data, which has mere effect on the entire
network. In addition, compressed CNN models produced by most
of parameter refining methods [8, 14, 44] have their own structures
and calculation methods, which cannot be directly deployed using

conventional toolboxes and hardwares such as Caffe, Tensorflow,
and GPU devices. In specific, the convolution operation in these
compressed networks are implemented using complex tricks such
as sparse kernels, matrix decomposition, and coefficient represen-
tation, which leads to their theoretical accelerations are difficult
to achieve. By comprehensively and thoroughly investigating the
diverse and volatile network redundancies, we expect a compressed
model that is stored in regular network network formats and can
be constantly upgraded to cater for environment changes.

In this paper, we develop an evolutionary strategy to excavate
and eliminate redundancy in deep neural networks as illustrated in
Fig. 1. The network compression task can be formulated as a binary
programming problem, where a binary variable is attached to each
convolution filter to indicate whether or not the filter takes effect.
Inspired by studies in evolutionary computation [7, 23, 32], we treat
each binary encoding w.r.t. a compressed network as an individual
and stack them to constitute the population. A series of evolution-
ary operators (e.g. crossover and mutation) allow the population
to constantly evolve to reach the most competitive, compact, and
accurate network architecture. When evaluating an individual, we
use a relatively small subset of the original training dataset to fine-
tune the compressed network, which quickly excavates its potential
performance. In addition, there are billions of parameters in a well
designed deep network, but the number of its filters is usually only
about 10k (e.g. AlexNet and ResNet). Therefore, the overall running
times and the space complexity of the evolutionary algorithm for
compressing CNNs are acceptable. Experiments conducted on sev-
eral benchmark CNNs demonstrate that compressed networks are

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2477

Towards Evolutionary Compression KDD 2018, August 19–23, 2018, London, United Kingdom

more lightweight but have comparable accuracies to their original
counterparts. Beyond conventional network redundancies, we sug-
gest that convolutional filters with either large or small weights
possess redundancies, the discrepancy between filters is appreci-
ated, and that high-frequency coefficients of convolution filters are
unnecessary (i.e. smooth filters are adequate).

2 RELATEDWORKS
Our goal is to discard redundant weights and parameters in pre-
trained CNNs to further reduce their online memory usage and
FLOPs (floating number operations, which is mainly accumulated
by floating number multiplications). There is a number of works
proposed for discovering redundancy in pre-trained CNN models,
which can be divided into two categories based on techniques they
used.

2.1 Parameter Refining
There are usually billions of parameters in a well designed neural
networks [15, 36], and the most intuitive method is to excavate
which of them are redundant for the entire inference. Thus, lots of
approaches were proposed for refining parameters in convolution
filters in CNNs.

Parameter decomposition. Denton et al. [8] used singular
value decomposition (SVD) technique to discover the low-rank
approximation of parameters in the fully-connected layer. Kim et
al. [22] utilized tensor decomposition techniques to speed up fully-
connected layers. Lebedev et al. [25] used rank-1 filters to reduce
the number of parameters. In addition, since there are similar pa-
rameters in different convolution filters, Gong et al. [12] employed
k-means to obtain the cluster centers of weights of convolution
filters, and then approximately represented convolution filters us-
ing their corresponding clustering centers. Chen et al. [4] used a
hash function to randomly cluster weights of convolution filters, so
that weights belonging to the same hash bucket can be represented
using a single parameter. Jaderberg et al. [21] constructed a small
dictionary using a set of pre-learned bases to represent convolution
filters. If the number of bases is much less than the dimensional-
ity of convolution filters, the storage complexity will be reduced
significantly.

Parameter quantization. Parameters in traditional CNNswere
trained using 32-bit floating values, which is fine-drawn. There-
fore, Vanhoucke et al. [39] proposed a fixed-point implementation
with 8-bit integer values, and Hwang and Sung [20] utilized 3-bit
values to represent parameters. Furthermore, a lot of binarization
works [5, 6, 31, 41] were proposed to reduce the parameter redun-
dancy of CNNs, thus calculations and storages of 32-bit values were
significantly reduced to those of binary values. However, the param-
eter binarization strategy will sacrifice too much accuracy of the
original network. Hence, Arora et al. [1] utilized +1/0/-1 parameters
to relax the +1/-1 constraint for enhancing the performance of the
binaryzied network.

Parameter pruning. Since the convolution operation can be
seen as weighted combination of input data and parameter in con-
volution filters, subtle parameters tends to have limited influence
on the output results. Therefore, Han et al. [14] demonstrated that

most of parameters could be removed without affecting the per-
formance of the pre-trained network, and [13] further compactly
stored the generated sparse networks in sparse row format (CSR) [3]
and Huffman encoding [19]. Wang et al. [44] expanded the pruning
approach to the DCT frequency domain to achieve higher compres-
sion and speed-up ratios. On the other side, dictionary learning
based methods can also be introduced for pruning useless parame-
ters. For example, Liu et al. [27] learned a set of kernel bases, and
then transferred original filters in the coefficient domain with high
sparsity, Bagherinezhad et al. [2] decomposed original convolu-
tion filters as weighted combinations of basis filters and sparse
coefficients.

2.2 Architecture Refining
In addition to these parameter refining methods which change the
basic convolution component in CNNs, there are lots of works
focusing on refining architectures of pre-trained neural networks.

Hinton et al. [17] first proposed the teacher-student paradigm
for learning a thinner neural network by minimizing the differ-
ence between the compressed network and the teacher network.
Romero et al. [34] further explored a method for inheriting in-
formation from the teacher network at an arbitrary layer, which
enhances the accuracy of the thinner and deeper student network.
McClure and Kriegeskorte [29] minimized the pairwise distance of
samples between the compressed network and the original network.
Wang et al. [43] proposed to exploit adversarial loss to supervise
the compression. You et al. [47] utilized multiple teacher networks
for training the compressed network. [50] introduced the attention
loss for enhancing the student network. Wang et al. [42] exploited
a compact feature map learning methods and established portable
networks. etc. However, performance of the student network is
usually lower than that of the teacher network, and all pre-trained
convolution filters in original CNNs were abandoned, which are
useful for maintaining the performance of compressed networks.

Moreover, some works expanded the parameter pruning to chan-
nel pruning or neuron pruning, which also produces compressed
networks with more efficient architectures. For example, Hu et
al. [18] proposed to remove neurons in fully connected layers with
subtle outputs. Wen et al. [46] excavated redundancy by pruning
weights in different aspects (e.g. channels, filters, neurons). He et
al. [16] explored a LASSO regression based channel selection for re-
fining the architecture of a pre-trained CNN. Luo et al. [28] proposed
to discard filters with less importances for establishing portable net-
works. Yu et al. [48] proposed to remove neurons with less scores
in the propagation. However, these methods face the same problem
as that of parameter pruning methods, i.e. the redundancy in CNNs
are not completely exacted.

It is obvious that architecture refining methods are much more
flexible since compressed network by utilizing these methods can
be perfectly supported by any off-the-shelf deep learning libraries.
In fact, compressed network with portable architectures can be
further compressed by parameter refining methods such as deep
compression [13] and CNNpack [44].

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2478

KDD 2018, August 19–23, 2018, London, United Kingdom Yunhe Wang, Chang Xu, Jiayan Qiu, Chao Xu, and Dacheng Tao

3 EVOLUTIONARY COMPRESSION
Most existing CNN compression methods are based on the consen-
sus that weights or filters with subtle values have limited influence
on the performance of the original network. In this section, we
introduce an evolutionary algorithm to significantly excavate re-
dundancy in CNNs and devise a novel compression method.

3.1 Modeling Filters Redundancy
Considering a convolutional neural network L with p convolu-
tional layers, we define p sets of convolution filters F = {F1, ..., Fp }
for these layers. For the i-th convolutional layer, its filter is denoted
as Fi ∈ RHi×Wi×Ci×Ni , where Hi andWi are the height and width
of filters, respectively, Ci is the channel size, and Ni is the number
of filters in this layer. Given a training sample X and the corre-
sponding ground truth Y , the error of the network can be defined
as E (X,Y, F), which could be, for example, softmax or Euclidean
losses. The conventional parameter pruning algorithm [13, 14] can
be formulated as

min
B1, ...,Bp

| |E (X,Y, F̂) − Y||2F + λ
p∑
i=1
| |Bi | |1,

s .t . F̂ = {F1 ◦ B1, ..., Fp ◦ Bp },

Bi ∈ {0, 1}Hi×Wi×Ci×Ni , ∀ i = 1, ...,p,

(1)

where Bi is a binary tensor for removing redundant weights in
F, | | · | |1 is the ℓ1-norm accumulating absolute values Bi , i.e. the
number in Bi , ◦ is the element-wise product, | | · | |F is the Frobenius
norm for matrices, and λ is the tradeoff parameter. A larger λ will
make Bi more sparse and so a network parameterized with F will
have fewer weights.

In general, Fcn. 1 is easy to solve if E (X,Y, F̂) is a linear map-
ping of F̂. However, neural networks are composed of a series of
complex operations, such as pooling and ReLU, which increase the
complexity of Fcn. 1. Therefore, a greedy strategy [13, 46] has been
introduced to obtain a feasible solution that removes weights with
small absolute values:

B
(h,w,c,n)
i =

{
0, if |F (h,w,c,n)

i | ≤ τ ,
1, otherwise,

(2)

where τ > 0 is a threshold. This strategy is based on the intuitive
assumption that small weights make subtle contributions to the
calculation of the convolution response.

Although sparse filters learned by Fcn. 1 demand less storage
and computational resources, the size of the feature maps produced
by these filters does not change. For example, a convolutional layer
with 10 filters will generate 10 feature maps for one input data
before and after compression, which accounts for a large proportion
of online memory usage. Moreover, these sparse filters usually
need some additional techniques to support and speed-up their
compression such as CuSparse kernel, CSR format, or the fixed-
point multiplier [13]. Therefore, more flexible approaches [10, 18,
46] have been developed to directly discard redundant filters in a
given convolutional layer:

B
(:, :, :,n)
i =

{
0, if | |F (:, :, :,n)i | |2F ≤ τ ,
1, otherwise,

(3)

where B (:, :, :,n)
i denotes the n-th filter in the i-th convolutional layer.

By directly removing convolution filters, network complexity can
be significantly decreased. However, Fcn. 3 is also biased since the
Frobenius norm of filters is not a reasonable redundancy indicator.
For example, most of the weights in a filter for extracting edge
information are very small. Thus, a more accurate approach for
identifying redundancy in CNNs is urgently required.

3.2 Modeling Redundancy in CNNs by
Exploiting Evolutionary Algorithms

Instead of the greedy strategies shown in Fcns. 2 and 3, evolutionary
algorithms such as the genetic algorithm (GA [7, 32]) and simulated
annealing (SA [23]) have been widely applied to the NP-hard binary
programming problem. A series of bit (0 or 1) strings (individuals)
are used to represent possible solutions of the binary programming
problem, and these individuals evolve using some pre-designed
operations to maximize their fitnesses.

A binary variable can be attached to each weight in the CNNL to
indicate whether the weight takes effect or not, but a large number
of binary variables will significantly slow down the CNN com-
pression process, especially for sophisticated CNNs learned over
large-scale datasets (e.g. ImageNet [35]). For instance, AlexNet [24]
has eight convolutional layers with more than 6 × 107 32-floating
weights in total, so it is infeasible to generate a population with
hundreds of 6 × 107-dimensional individuals. In addition, as men-
tioned above, excavating redundancy in convolution filters itself
produces a regular CNN model with less computational complexity
andmemory usage, which is more suitable for practical applications.
Therefore, we propose to assign a binary bit to each convolution
filter in a CNN, and these binary bits form an individual b for
this network. By doing so, the dimensionality of b is tolerable, e.g.
b ∈ {0, 1}9568 (without the last 1000 convolution filters correspond-
ing to the 1000 classes in the ILSVRC 2012 dataset) for AlexNet.

During evolution, we use GA to constantly update individuals
of greater fitness. Other evolutionary algorithms can be applied
using a similar approach. The compression task has two objectives:
preserving performance and removing the redundancy of the origi-
nal networks. The fitness of a specific individual b can therefore be
defined as

f (b) = 1 − E (X,Y, F̂) + λ

L

p∑
i=1
| |1 − bi | |1, (4)

where bi denotes the binary bit for the i-th convolution filter in the
given network, and L is the number of all convolution filters in the
network. E (X,Y, F̂) calculates the classification loss of the network
using compressed filters F̂ = {F1 ◦ B1, ..., Fp ◦ Bp }, which supposed
as a general loss taken value from 0 to 1. In addition, we include a
constant 1 in Fcn. 4, which ensures f (b) > 0 for the convenience
of calculating the probability of each individual in the evolutionary
algorithm process. λ > 0 is the tradeoff parameter, and

B
(:, :, :,n)
i =

{
0, if bi (n) = 0,
1, otherwise, (5)

where bi (n) = 0 implies that the n-th filter in the i-th layer has
been discarded, otherwise retained.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2479

Towards Evolutionary Compression KDD 2018, August 19–23, 2018, London, United Kingdom

In addition, the last term in Fcn. 4 implicitly assumes that dis-
carding every convolution filter makes an equivalent contribution
to compression. However, the memory utilization of filters in dif-
ferent convolutional layers is different and related to the height H ,
widthW , and the number of channel C . Therefore, filter size must
be taken into account, and Fcn. 4 can be reformulated as:

f (b) = 1 − E (X,Y, F̂) + λ

M

p∑
i=1

(HiWiCi · | |1 − bi | |1) , (6)

where Hi ,Wi , Ci are height, width, and channel number of filters
in the i-th convolutional layer, respectively.M = ∑pi=1 HiWiCiNi
is the total number of weights in the network, which scales the last
term in Fcn. 6 to [0, λ].

In addition, the number of channelsCi in the i-th layer is usually
set as the number of convolution filters Ni−1 (N0 = 3 for RGB color
images) in the (i − 1)-th layer to make two consecutive network
layers compatible. Instead of fixingCi in Fcn. 6,Ci should vary with
bi−1. Thus, we reformulate the calculation of fitness as follows:

f (b) = 1 − E (X, Y, F̂) + λ
M

p∑
i=1

(HiWi · | |1 − bi−1 | |1 · | |1 − bi | |1) , (7)

where bp (n) = 1, ∀ n = 1, ...,Np for the last layer consisting of
nodes corresponding to different classes in a particular dataset. The
second objective in Fcn. 7 accumulates the discarded weights of
the compressed network. Since the error rate of a network tends
to be influenced by adjusting the network architecture, we use a
subset of the training data (10k images randomly extracted from
the training set) to fine-tune the network weights and then re-
calculate E (X,Y, F̂) to provide a more reasonable evaluation. This
fine-tuning is fast, since compressed networks with fewer filters
require much less computation, e.g. fine-tuning over 10k images will
cost about 2 seconds for LeNet and about 30 seconds for AlexNet,
which is tolerable. Then, GA is deployed to discover the fittest
individual through several evolutions detailed in the next section.

3.3 Genetic Algorithm for Compression
GA can automatically search for compact neural networks by alter-
nately evaluating the fitness of each individual in the whole popu-
lation and executing operations on individuals. The population in
the current iteration are regarded as parents, who breed another
population as offspring using some representative operations, in-
cluding selection, crossover, andmutation, with the expectation
that the subsequent offsprings are fitter than the preceding parents.
First, each individual is given a probability by comparing its fitness
against those of other individuals in the current population:

Pr(bj) = f (bj)
/ K∑
k=1

f (bk) , (8)

where K is the number of individuals in the population. Then, the
above three operations will be randomly applied as follows:

Selection. Given a probability parameter s1, an individual is
selected according to Fcn. 8 and then directly duplicated as an
offspring. It is clear that compressed networks with higher accuracy
and compression ratios will be preserved. The best individual in
the parent population is usually inherited to preserve the optimal
solution.

Algorithm 1 Evolution method for compressing CNNs.
Input: An image dataset {X,Y} including n images for evaluating

individuals, a pre-trained convolutional neural network L, pa-
rameters: the scale of the population K , the maximum iteration
number T , λ, s1, s2, and s3 = 1 − s1 − s2.

1: Randomly initialize the population P1, each individual is repre-
sented as a binary vector w.r.t. convolution filters in the given
network L;

2: for t = 2 to T do
3: Calculate the fitness of individuals in Pt−1 (Fcn. 7);
4: Calculate probability of selecting each individual Fcn. 8;
5: for k = 2 to K do
6: P

(1)
t ← the best individual in Pt−1;

7: Generate a random value s ∼ [0, 1];
8: if s < s1 then
9: P

(k)
t ← a randomly selected parent (Fcn. 8);

10: else if s1 ≤ s < s1 + s2 then
11: Randomly select two parents;
12: Generate two offspring (Fcn. 9) and calculate their fit-

nesses according to Fcn. 7;
13: P

(k)
t ← the best offspring;

14: else
15: P

(k)
t ← a randomly selected parent after applying XOR

on a fragment according to Fcn. 10;
16: end if
17: end for
18: end for
19: Use the optimal individual in PT to construct a compact neural

network L̂, and maintain convolution filters in L;
Output: The compressed L̂ after fine-tuning.

Crossover. Given a probability parameter s2, two selected par-
ents according to Fcn. 8 will be crossed to generate two offspring
as follows:

parent1 : 01010
����1110010

����0101 parent2 : 01011
����0101011

����0110

offspring1 : 01010
����0101011

����0101 offspring2 : 01011
����1110010

����0110
(9)

The objective of the crossover operation is to integrate excellent
information from the parents. The fitness of two offspring are dif-
ferent, and we discard the weaker one.

Mutation. To promote population diversity, mutation randomly
changes a fragment in the parent and produces an offspring. The
conventional mutation operation for binary encoding is a XOR
operation as follows:

parent : 100
����10010101

����101010 offspring : 100
����01101010

����101010 (10)

The parent is also selected according to Fcn. 8, and the mutation
operation is performed with a probability parameter s3. Since the
scale of offspring (i.e. the number of binary codes K) is the same as
that of parents, we have s1 + s2 + s3 = 1.

By iteratively employing these three genetic operations, the
initial population will be updated efficiently until the maximum
iteration number is achieved. After obtaining the individual with
optimal fitness, we can reconstruct a compact CNN. Then, the
fine-tuning strategy is adopted to enhance the performance of the

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2480

KDD 2018, August 19–23, 2018, London, United Kingdom Yunhe Wang, Chang Xu, Jiayan Qiu, Chao Xu, and Dacheng Tao

Figure 2: Convolution filters learned on MNIST. From top to bottom: the original convolution filters, filters after applying the
proposed method, and filters after fine-tuning.

Table 1: Compression statistics for AlexNet.

Layer Num of Weights Memory Num of (New) Weights Memory rc

conv1 11 × 11 × 3 × 96 1.24MB 11 × 11 × 3 × 56 0.08MB 1.71×
conv2 5 × 5 × 48 × 256 1.88MB 5 × 5 × 28 × 120 0.32MB 3.66×
conv3 3 × 3 × 256 × 384 3.62MB 3 × 3 × 120 × 190 0.78MB 4.31×
conv4 3 × 3 × 192 × 384 2.78MB 3 × 3 × 95 × 188 0.61MB 4.12×
conv5 3 × 3 × 94 × 144 1.85MB 3 × 3 × 175 × 226 0.46MB 3.63×
fc6 6 × 6 × 256 × 4096 144MB 6 × 6 × 144 × 1386 27.41MB 5.25×
fc7 1 × 1 × 4096 × 4096 64MB 1 × 1 × 1386 × 1848 9.77MB 6.55×
fc8 1 × 1 × 4096 × 1000 15.62MB 1 × 1 × 1848 × 1000 7.05MB 2.22×
Total 60954656 232.52MB 12186444 46.48MB 5.00×

compressed network. Alg. 1 summarizes the proposed evolutionary
method for compression.

4 COMPRESSION AND SPEED-UP
IMPROVEMENTS

In the above section, we presented the evolutionary method for
compressing pre-trained CNN models. Since there is at least one
convolution filter per layer in the compressed network L̂, it has
the same depth but less filters in F̂ compared to the original net-
work L with F. Here we further analyze the memory usage and
computational cost of compressed CNNs using Alg. 1.

Speed-up ratio. For a given image, the i-th convolutional layer
Li produces feature maps Yi ∈ RH

′
i×W

′
i ×Ni through a set of convo-

lution filters F ∈ RHi×Wi×Ci×Ni , where H ′i andW
′
i are the height

and width of feature maps, respectively, and Ci = Ni−1. Since mul-
tiplications of 32-bit floating values are much more expensive than
additions, and there is more computation in other auxiliary layers
(e.g. pooling, ReLU, and batch normalization), speed-up ratios are
usually calculated on these floating number multiplications [31, 44].
Considering the major computational cost, the speed-up ratio of
the compressed network for this layer compared to the original
network is

rsi =
HiWiNi−1NiH

′
iW
′
i

HiWi N̂i−1N̂iH
′
iW
′
i
=

Ni−1Ni

N̂i−1N̂i
, (11)

where N̂i = | |1 − bi | |1 is the number of filters in the i-th convolu-
tional layer of the compressed network, as shown in Fcn. 7. Besides
the filter number N̂i of a layer, N̂i−1 also has a greater impact on
rsi , suggesting that it is very difficult to directly find an optimal
compact architecture of the original network. Moreover, excavat-
ing redundancy in the filter itself may be a more promising way

to speed it up, e.g. if we discard half of the filters per layer, the
speed-up ratio of the proposed method is about 4×.

Compression ratio. The compression ratio on convolution fil-
ters is easy to calculate and is equal to the last term in Fcn. 7.
Specifically, for the i-th convolutional layer, the compression ratio
of the proposed method is

rci =
HiWiNi−1Ni

HiWi N̂i−1N̂i
=

Ni−1Ni

N̂i−1N̂i
. (12)

Besides the convolution filters, there are other memory usages
that are often ignored in existing parameter refining methods such
as deep compression [13] and CNNpack [44] etc. Although FLOPs
of the compression network are significantly reduced after applying
these methods, the network will produce the same amount of fea-
ture maps though there is only one parameter in each convolution
filter.

In fact, the feature maps of different layers account for a large
proportion of online memory. In some implementations [40], the
feature maps of a layer are removed after they have been used to
calculate the following layer to reduce the online memory usage.
However, memory allocation and release are time consuming. In ad-
dition, short-cut layers are widely used in recent CNN models [15],
in which previous feature maps are preserved for combination
with other layers. Discarding redundant convolutional filters signif-
icantly reduces the memory usage of feature maps. For a given con-
volutional layer Li , the compression ratio of the proposed method
on feature maps is

rfi =
NiH

′
iW
′
i

N̂iH
′
iW
′
i
=

Ni

N̂i
, (13)

which is directly affected by the sparsity of bi . Accordingly, the
memory to store the feature maps of other layers (e.g. pooling and
ReLU) will be reduced simultaneously. The experimental results

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2481

Towards Evolutionary Compression KDD 2018, August 19–23, 2018, London, United Kingdom

(a) Compression ratio of all convolution filters (rc) (b) Speed-up ratio of all convolutional layers (rs)

Figure 3: Compression statistics for ResNet-50.

Table 2: Compression statistics for VGG-16 Net.

Layer Num of Weights Memory Num of (New) Weights Memory rc

conv1_1 3 × 3 × 3 × 64 12.26MB 3 × 3 × 3 × 12 0.001MB 5.33×
conv1_2 3 × 3 × 64 × 64 12.39MB 3 × 3 × 12 × 28 0.01MB 12.19×
conv2_1 3 × 3 × 64 × 128 6.41MB 3 × 3 × 28 × 57 0.05MB 5.13×
conv2_2 3 × 3 × 128 × 128 6.69MB 3 × 3 × 57 × 61 0.12MB 4.71×
conv3_1 3 × 3 × 128 × 256 4.19MB 3 × 3 × 61 × 133 0.28MB 4.04×
conv3_2 3 × 3 × 256 × 256 5.31MB 3 × 3 × 133 × 127 0.58MB 3.88×
conv3_3 3 × 3 × 256 × 512 5.31MB 3 × 3 × 127 × 137 0.60MB 3.77×
conv4_1 3 × 3 × 512 × 512 6.03MB 3 × 3 × 137 × 194 0.91MB 4.93×
conv4_2 3 × 3 × 512 × 512 10.53MB 3 × 3 × 194 × 119 0.79MB 11.36×
conv4_3 3 × 3 × 512 × 512 10.53MB 3 × 3 × 119 × 320 1.31MB 6.88×
conv5_1 3 × 3 × 512 × 512 9.38MB 3 × 3 × 320 × 72 0.79MB 11.38×
conv5_2 3 × 3 × 512 × 512 9.38MB 3 × 3 × 72 × 62 0.15MB 58.72×
conv5_3 3 × 3 × 512 × 512 9.38MB 3 × 3 × 62 × 122 0.26MB 34.66×

fc6 7 × 7 × 512 × 4096 392MB 7 × 7 × 122 × 2300 52.45MB 7.47×
fc7 1 × 1 × 4096 × 4096 64MB 1 × 1 × 2300 × 125 1.09MB 58.36×
fc8 1 × 1 × 4096 × 1000 15.62MB 1 × 1 × 125 × 1000 0.48MB 32.77×
Total 138344128 579.46MB 20118610 59.88MB 8.81×

and a discussion of compression and speed-up ratios are presented
in the following section.

5 EXPERIMENTS
Baseline methods and Datasets. The proposed method was eval-
uated on four baseline CNN models: LeNet [26], AlexNet [24],
VGGNet-16 [36], and ResNet-50 [15], and conducted using the
MNIST handwritten digit and ILSVRC datasets. We used MatCon-
vNet [40] and NVIDIA Titan X graphics cards to implement the
proposed method. In addition, several state-of-the-art approaches
were selected for comparison including both parameter refining (e.g.
deep compression [13], CNNpack [44]) and architecture refining
algorithms (e.g. Trimming [18] and ThiNet [28]).

LeNet on MNIST. The performance of the proposed method
was first evaluated on a small network to study some of its character-
istics. The network has four convolutional layers of size 5×5×1×20,
5 × 5 × 20 × 50, 4 × 4 × 50 × 500, and 1 × 1 × 500 × 10, respectively.
The model was trained with batch normalization layers and the
accuracy was 99.20%.

The proposed method has several parameters as shown in Alg. 1.
Population K was set to 1000 to ensure a sufficiently large search
space, and the maximum iteration number T was set to 100. Three
probability parameters were empirically set to s1 = 0.2, s2 = 0.7,
and s3 = 0.1 [7]. A larger λ makes the compressed network more

compact, but the accuracy of the original network cannot be re-
tained in the compressed counterpart. We tuned this parameter
from 0.5 to 1.5 and set it to 0.9, which was the best trade-off be-
tween network accuracy and compression ratio, since the accuracy
of the original network was very high and each individual could
maintain considerable accuracy.

The evolutionary process for compressing the network is shown
in Fig. 1. Individuals in the population are updated with higher
fitness individuals after each iteration. As a result, we obtained a
103KB compressed network that consistutes of four convolutional
layers: 5× 5× 1× 9, 5× 5× 9× 17, 4× 4× 17× 84, and 1× 1× 84× 10,
respectively. The model accuracy after fine-tuning was 99.20%, i.e.
there was no decrease in accuracy. Compression and speed-up ratios
of the entire network were rc = 15.52×, rs = 5.76, and rf = 2.42.

Furthermore, for fair comparison, we directly initialized a net-
work with the same architecture (i.e. we directly used Gaussian
random values to initialize a network of the same architecture as
that of the resulting network from the proposed ECS) and tuned it
on MNIST. Unfortunately, the accuracy of this network was only
98.5%, significantly lower than that of the original network since it
cannot inherit pre-trained convolution filters of the original net-
work. Moreover, given the same total number of filters as that of the
resulting network from the proposed ECS, we designed an ordinary
network by randomly choosing the number of filters in each layer.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2482

KDD 2018, August 19–23, 2018, London, United Kingdom Yunhe Wang, Chang Xu, Jiayan Qiu, Chao Xu, and Dacheng Tao

Table 3: An overall comparison between state-of-the-art CNN compression methods and the proposed evolutionary compres-
sion scheme (ECS) on the ILSVRC2012 dataset. The overall compression and speed-up ratios are denoted rc and rs , respectively.

Model Evaluation Original Trim [18] ThiNet [28] ECS DeepComp [13] CNNpack [44] ECS+CNNpack

AlexNet [24]

rc 1 - - 5.00× 35× 39× 44.83×
rs 1 - - 3.34× - 25× 26.61×

top-1 err 41.8% - - 41.9% 42.7% 41.6% 41.9%
top-5 err 19.2% - - 19.2% 19.7% 19.2% 19.3%

VGGNet [36]

rc 1 2.70× 16.63× 8.81× 49× 46× 50.19×
rs 1 ≈1× 3.31× 5.88× 3.5× 9.4× 10.24×

top-1 err 28.5% 26.7% 32.6% 29.5% 31.1% 29.7% 29.5%
top-5 err 9.9% 8.7% 12.1% 10.2% 10.9% 10.4% 10.3%

ResNet [15]

rc 1 - 2.95× 4.10× - 12.2× 14.64×
rs 1 - 3.5× 3.83× - 4× 5.19×

top-1 err 24.6% - 31.6% 25.3% - - 25.2%
top-5 err 7.7% - 11.7% 8.1% - 7.8% 7.9%

The network accuracy was about 92.7%, demonstrating that the
proposed method provides an effective architecture for construct-
ing a portable network and inherits useful information from the
original network.

Filter visualization. The proposed method excavates redun-
dant convolution filters using an evolutionary algorithm, which
is different to the existing weight or filter pruning approaches.
Therefore, it is necessary to explore which filters are recognized as
redundant and which convolution filters are optimal for CNNs. To
this end, we visualized the LeNet filters on MNIST before and after
applying the proposed method, as shown in Fig. 2.

The result shown in the second row of Fig. 2 is particularly inter-
esting. Our method not only discards small filters but also removes
some filters with large weights. Of note, the remaining filters after
fine-tuning are even more distinct. The average Euclidean distance
of filters in the third row (compressed network) is 0.2428, while
Euclidean distances of filters in the first and second rows are 0.1927
and 0.1789, respectively. This observation shows that redundancy
can exist in either large or small convolution filters, and similar
filters may be redundant and non-contributory to the entire CNN,
providing a strong a priori rationale for designing and learning CNN
architectures. In addition, the filters shown in the third line are
obviously smoother than those in the original network, demonstrat-
ing the feasibility of compressing CNNs in the frequency domain
as discussed in [44].

Compressing convolutional networks on ImageNet.Wenext
employed the proposed Evolutionary Compression Scheme (ECS)
on ImageNet ILSVRC 2012 [35], which contains 1.2 millions im-
ages for training and 50k images for testing. We examined three
mainstream CNN architectures: AlexNet [24], VGGNet-16 [36], and
ResNet-50 [15]. There are over 61M parameters in AlexNet and
over 138M weights in VGGNet-16. ResNet-50 has about 25M pa-
rameters, which is more compact than the previous two CNNs. The
top-5 accuracies of these three models were 80.8%, 90.1%, 92.9%,
respectively.

Since the accuracy of convolutional networks on ImageNet was
much harder to maintain, we adjusted λ = 0.5 to allow individuals
higher accuracy evolution. The compression and speed-up ratios of
the proposed methods on the three CNNs are shown in Table 3. In

addition, architectures of compressed AlexNet and VGGNet-16 are
shown in Tab. 1 and Tab. 2, and detailed compression and speed-up
results of ResNet-50 are shown in Fig. 3.

Compared with architecture refining methods. A detailed
comparison of the above three benchmark deep CNN models be-
tween the proposed method and state-of-the-art methods can be
found in Table 3. We first compared the proposed ECS with two ar-
chitecture refining approaches, i.e. Trimming [18] and ThiNet [28].
Trimming only compresses fully connected layers, whose memory
usage accounts for the largest proportion in VGGNet while calcu-
lation accounts for a very small proportion of the entire network.
Therefore, its speed-up ratio is approximate to 1 and it achieved
a 2.7× compression ratio on the VGGNet. ThiNet firstly replaces
fully connected layers by global average pooling (GAP) layers to
eliminate over 80% parameters with an acceptable accuracy decline,
and then removes useless filters in convolutional layers to obtain
a very high compression ratio on the VGGNet. The ResNet-50 has
a more compact architecture, whose layers cannot be directly re-
placed by GAP layers. Thus, the compression ratio of ThiNet is only
2.95×, and the speed-up ratio is 3.5×. Contrastively, we excavated
redundant convolution filters globally yielding higher compression
performance, and accuracies of compressed networks by exploiting
ECS are higher than those of ThiNet.

Comparedwith parameter refiningmethods.Asmentioned
above, compressed networks by exploiting architecture refining
methods are still regular CNNs, which can be further squeezed by
exploiting parameter refining approaches such as sparse shrink-
age and Huffman encoding. Therefore, we further applied CN-
Npack [44] on models generated by ECS as detailed in Table 3.
Results of the proposed method are slightly higher than those of
CNNpack, since networks we used before pruning, quantization,
and encoding are more portable than those used in the original CN-
Npack. It is obvious that ECS+CNNpack can surpass all comparison
methods since we eliminate redundant parameters and filters as
much as possible.

However, neural networks compressed with parameter refining
techniques such as sparsity and Huffman encoding cannot be easily
launched on existing libraries, since convolution operations in these
compressed network cannot be directly implemented using original

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2483

Towards Evolutionary Compression KDD 2018, August 19–23, 2018, London, United Kingdom

codes. Differently, compressed CNNs using ECS can be directly
utilized and deployed on any platform, which are more flexible.

Compression ratios on featuremaps.As discussed in Fcn. 13,
the compression ratio on CNN feature maps is also an important
metric for evaluating compression methods (since we need to save
feature maps of intermedia layers for subsequent calculating in
recent CNN models such as ResNets [15]), but it is ignored in most
existing parameter refining approaches. Therefore, the compression
ratios on feature maps of these methods are both equal to 1× such
as [8, 13, 44].

Table 4: Compression ratios of CNN feature maps.

Model AlexNet VGGNet-16 ResNet-50
Original memory 5.49 MB 109.26 MB 137.25 MB

Compression ratio rf 1.88× 2.54× 1.86×

The compression ratios on feature maps of the proposed method
on different CNNs are shown in Table 4. Note that other architec-
ture refining methods can also achieve considerable feature map
compression ratios, but they did not report these results. However,
the amount of feature maps indicate the required calculation. Since
the proposed method obtained higher speed-up ratios, its rf values
are definitely higher than those of other methods such as Trimming
and ThiNet. Overall, it is clear that the compressed networks using
ECS are more portable which can not only reduce memory usage
and computational complexity produced by convolution filters, but
also save the memory usage brought by considerable feature maps.
Therefore, the proposed method can provide more online benefits
than other compression methods.

6 CONCLUSION
CNNs with higher performance and portable architectures are ur-
gently required for mobile devices. This paper presents an effective
CNN compression technique using an evolutionary algorithm. Com-
pared to state-of-the-art methods, we no longer directly recognize
some weights or filters as redundant according to some priori, e.g.
subtle weights or filters. The proposed method identifies redun-
dant convolution filters by iteratively refining a certain number of
networks before learning a compressed network with significantly
fewer parameters. Our experiments show that the proposed method
can achieve significant compression and speed-up ratios and retain
the classification accuracy of the original neural network. Moreover,
the network compressed by the proposed approach is still a regular
CNN that can be directly used for online inference without any
decoding or other sophisticated technical supports.

ACKNOWLEDGMENTS
This work was supported in part by the Australian Research Council
under Projects: FL-170100117, DE-180101438, DP-180103424, DP-
140102164, and LP-150100671. We also thank supports of NSFC
61375026 and 2015BAF15B00.

REFERENCES
[1] Sanjeev Arora, Aditya Bhaskara, Rong Ge, and TengyuMa. 2014. Provable bounds

for learning some deep representations. ICML (2014).

[2] Hessam Bagherinezhad, Mohammad Rastegari, and Ali Farhadi. 2017. LCNN:
Lookup-based Convolutional Neural Network. In CVPR.

[3] Nathan Bell and Michael Garland. 2009. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis.

[4] Wenlin Chen, James T Wilson, Stephen Tyree, Kilian Q Weinberger, and Yixin
Chen. 2015. Compressing neural networks with the hashing trick. In ICML.

[5] Matthieu Courbariaux and Yoshua Bengio. 2016. Binarynet: Training deep neural
networks with weights and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830 (2016).

[6] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre Binaryconnect David.
2015. Training deep neural networks with binary weights during propagations.
arXiv preprint arXiv:1511.00363 (2015).

[7] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[8] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus.
2014. Exploiting linear structure within convolutional networks for efficient
evaluation. In NIPS.

[9] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2016. Image
super-resolution using deep convolutional networks. IEEE TPAMI 38, 2 (2016),
295–307.

[10] Michael Figurnov, Dmitry Vetrov, and Pushmeet Kohli. 2016. Perforatedcnns:
Acceleration through elimination of redundant convolutions. NIPS (2016).

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
feature hierarchies for accurate object detection and semantic segmentation. In
CVPR.

[12] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. 2014. Compress-
ing deep convolutional networks using vector quantization. arXiv preprint
arXiv:1412.6115 (2014).

[13] SongHan, Huizi Mao, andWilliam J Dally. 2016. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.
In ICLR.

[14] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both Weights
and Connections for Efficient Neural Network. In NIPS.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR.

[16] Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel pruning for accelerating
very deep neural networks. In ICCV.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[18] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. 2016. Network
Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep
Architectures. arXiv preprint arXiv:1607.03250 (2016).

[19] David A Huffman and others. 1952. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE 40, 9 (1952), 1098–1101.

[20] Kyuyeon Hwang and Wonyong Sung. 2014. Fixed-point feedforward deep neural
network design using weights+ 1, 0, and- 1. In IEEE Workshop on Signal Processing
Systems.

[21] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Speeding up
Convolutional Neural Networks with Low Rank Expansions. In BMVC.

[22] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and
Dongjun Shin. 2016. Compression of deep convolutional neural networks for
fast and low power mobile applications. In ICLR.

[23] Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, and others. 1983. Optimization
by simulated annealing. science 220, 4598 (1983), 671–680.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In NIPS.

[25] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor
Lempitsky. 2015. Speeding-up convolutional neural networks using fine-tuned
cp-decomposition. In ICLR.

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[27] Baoyuan Liu, MinWang, Hassan Foroosh,Marshall Tappen, andMarianna Pensky.
2015. Sparse convolutional neural networks. In CVPR.

[28] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017. Thinet: A filter level pruning
method for deep neural network compression. In ICCV.

[29] Patrick McClure and Nikolaus Kriegeskorte. 2016. Representational Distance
Learning for Deep Neural Networks. Frontiers in computational neuroscience 10
(2016).

[30] Zhou Phou, Hou Yunqing, and Feng Jiashi. 2018. Deep Adversarial Subspace
Clustering. In CVPR.

[31] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Net-
works. arXiv preprint arXiv:1603.05279 (2016).

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2484

KDD 2018, August 19–23, 2018, London, United Kingdom Yunhe Wang, Chang Xu, Jiayan Qiu, Chao Xu, and Dacheng Tao

[32] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Quoc Le, and Alex Kurakin. 2017. Large-Scale Evolution of Image Classi-
fiers. arXiv preprint arXiv:1703.01041 (2017).

[33] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards real-time object detection with region proposal networks. In NIPS.

[34] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio. 2014. Fitnets: Hints for thin deep nets. arXiv
preprint arXiv:1412.6550 (2014).

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, and
others. 2015. Imagenet large scale visual recognition challenge. IJCV 115, 3
(2015), 211–252.

[36] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks
for large-scale image recognition. ICLR (2015).

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In CVPR.

[38] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. 2016. Rethinking the Inception Architecture for Computer Vision.
In CVPR.

[39] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. 2011. Improving the speed
of neural networks on CPUs. In Deep Learning and Unsupervised Feature Learning
Workshop, NIPS.

[40] Andrea Vedaldi and Karel Lenc. 2015. MatConvNet: Convolutional neural net-
works for matlab. In Proceedings of the 23rd Annual ACMConference onMultimedia
Conference.

[41] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. 2013. Regu-
larization of neural networks using dropconnect. In ICML.

[42] Yunhe Wang, Chang Xu, Dacheng Tao, and Chao Xu. 2017. Beyond Filters:
Compact Feature Map for Portable Deep Model. In ICML.

[43] Yunhe Wang, Chang Xu, Chao Xu, and Dacheng Tao. 2018. Adversarial Learning
of Portable Student Networks. In AAAI.

[44] Yunhe Wang, Chang Xu, Shan You, Dacheng Tao, and Chao Xu. 2016. CNNpack:
Packing Convolutional Neural Networks in the Frequency Domain. In NIPS.

[45] Zhenyang Wang, Zhidong Deng, and Shiyao Wang. 2016. Accelerating Convolu-
tional Neural Networks with Dominant Convolutional Kernel and Knowledge
Pre-regression. In ECCV.

[46] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
Structured Sparsity in Deep Neural Networks. In NIPS.

[47] Shan You, Chang Xu, Chao Xu, and Dacheng Tao. 2017. Learning from Multiple
Teacher Networks. In ACM SIGKDD.

[48] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han,
Mingfei Gao, Ching-Yung Lin, and Larry S Davis. 2017. NISP: Pruning Networks
using Neuron Importance Score Propagation. arXiv preprint arXiv:1711.05908
(2017).

[49] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. 2017. On compressing
deep models by low rank and sparse decomposition. In CVPR.

[50] Sergey Zagoruyko and Nikos Komodakis. 2016. Paying more attention to atten-
tion: Improving the performance of convolutional neural networks via attention
transfer. arXiv preprint arXiv:1612.03928 (2016).

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2485

View publication statsView publication stats

https://www.researchgate.net/publication/326502551

	Abstract
	1 Introduction
	2 Related Works
	2.1 Parameter Refining
	2.2 Architecture Refining

	3 Evolutionary Compression
	3.1 Modeling Filters Redundancy
	3.2 Modeling Redundancy in CNNs by Exploiting Evolutionary Algorithms
	3.3 Genetic Algorithm for Compression

	4 Compression and Speed-up Improvements
	5 Experiments
	6 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 10
 Mask co-ordinates: Horizontal, vertical offset 43.20, 720.90 Width 526.51 Height 21.60 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 10

 CurrentAVDoc

 43.2005 720.8992 526.5056 21.6002

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 10
 9
 9

 1

 HistoryList_V1
 qi2base

